Abstract
ABSTRACT: Elevated plasma levels of inorganic phosphate (Pi) are harmful, causing, among other complications, vascular calcificationanddefective insulin secretion.Theunderlying molecularmechanismsof thesecomplications remain poorly understood.Wedemonstrated the role ofPi transport across theplasmalemmaonPi toxicity in INS-1Erat clonalb cells and rat pancreatic islet cells.Type III sodium–phosphate cotransporters (NaPi) are the predominant Pi transporters expressed in insulin-secreting cells. Transcript and protein levels of PiT-1 and -2, isotypes of type III NaPi, were upregulated by high Pi incubation. In patch-clamp experiments, extracellular Pi elicited a Na+-dependent, inwardly rectifying current, which was markedly reduced under acidic extracellular conditions. Cellular uptake of Pi elicited cytosolic alkalinization; intriguingly, this pH change facilitated Pi transport into the mitochondrial matrix. Increased mitochondrial Pi uptake accelerated superoxide generation, mitochondrial permeability transition, and endoplasmic reticulum stress-mediated translational attenuation, leading to reduced insulin content and impaired glucosestimulated insulin secretion. Silencing of PiT-1/-2 prevented Pi-induced superoxide generation andmPT, and restored insulin secretion. We propose that Pi transport across the plasma membrane and consequent cytosolic alkalinization could be a therapeutic target for protection from Pi toxicity in insulin-secreting cells, as well as in other cell types.—Nguyen, T. T., Quan, X., Xu, S.,Das, R., Cha, S.-K., Kong, I. D., Shong, M., Wollheim, C. B., Park,K.-S. Intracellular alkalinization by phosphate uptake via type III sodium–phosphate cotransporter participates in high phosphateinduced mitochondrial oxidative stress and defective insulin secretion. FASEB J. 30, 000–000 (2016). www.fasebj.org
KEY WORDS: inorganic phosphate • pancreatic b cells • mitochondrial permeability transition • endoplasmic reticulum stress • superoxide
References
Penido,M. G., and Alon, U. S. (2012) Phosphate homeostasis and its
role in bone health. Pediatr. Nephrol. 27, 2039–2048
Takeda, E., Taketani, Y., Sawada, N., Sato, T., and Yamamoto, H.
(2004)The regulationand functionofphosphate inthehumanbody.
Biofactors 21, 345–355
Hu, M. C., Kuro-o, M., and Moe, O. W. (2013) Renal and extrarenal
actions of Klotho. Semin. Nephrol. 33, 118–129
Kuro-o, M. (2013) A phosphate-centric paradigm for pathophysiology
andtherapyof chronic kidneydisease. Kidney Int Suppl (2011) 3, 420–426
Kuro-o, M. (2013) Klotho, phosphate and FGF-23 in ageing and disturbed
mineral metabolism. Nat. Rev. Nephrol. 9, 650–660
Takeda, E., Yamamoto, H., Nashiki, K., Sato, T., Arai, H., and
Taketani, Y. (2004) Inorganic phosphate homeostasis and the role of
dietary phosphorus. J. Cell. Mol. Med. 8, 191–200
Razzaque, M. S. (2011) Phosphate toxicity: new insights into an old
problem. Clin. Sci. 120, 91–97
Gonzalez-Parra, E., Tunon, J., Egido, J., and Ortiz, A. (2012)
Phosphate: a stealthier killer than previously thought? Cardiovasc.
Pathol. 21, 372–381
Jain,N., andElsayed,E. F. (2013)Dietaryphosphate:what dowe know
about its toxicity? J. Nephrol. 26, 856–864
Di Marco, G. S., K¨onig, M., Stock, C., Wiesinger, A., Hillebrand, U.,
Reiermann, S., Reuter, S., Amler, S., K¨ohler, G., Buck, F., Fobker,M.,
K¨umpers, P., Oberleithner, H., Hausberg, M., Lang, D., Pavenst¨adt,
H., and Brand,M. (2013)High phosphate directly affects endothelial
function by downregulating annexin II. Kidney Int. 83, 213–222
Sekiguchi, S., Suzuki, A., Asano, S., Nishiwaki-Yasuda, K., Shibata,M.,
Nagao, S., Yamamoto, N., Matsuyama,M., Sato, Y., Yan, K., Yaoita, E.,
and Itoh, M. (2011) Phosphate overload induces podocyte injury via
type III Na-dependent phosphate transporter. Am. J. Physiol. Renal
Physiol. 300, F848–F856
Crouthamel, M. H., Lau, W. L., Leaf, E. M., Chavkin, N. W.,
Wallingford, M. C., Peterson,D. F., Li,X., Liu, Y.,Chin,M.T., Levi,M.,
and Giachelli, C. M. (2013) Sodium-dependent phosphate cotransporters
and phosphate-induced calcification of vascular smooth
muscle cells: redundant roles for PiT-1 and PiT-2. Arterioscler. Thromb.
Vasc. Biol. 33, 2625–2632
Fadda,G.Z., Hajjar, S.M., Perna, A. F., Zhou,X. J., Lipson, L. G., and
Massry, S. G. (1991)On themechanismof impaired insulin secretion
in chronic renal failure. J. Clin. Invest. 87, 255–261
Lorenzo, C., Hanley, A. J., Rewers,M. J., and Haffner, S.M. (2014)
Calcium and phosphate concentrations and future development of
type 2 diabetes: the Insulin Resistance Atherosclerosis Study.
Diabetologia 57, 1366–1374
Nguyen, T. T., Quan, X., Hwang, K. H., Xu, S., Das, R., Choi, S. K.,
Wiederkehr, A., Wollheim, C. B., Cha, S. K., and Park, K. S. (2015)
Mitochondrial oxidative stress mediates high-phosphate-induced secretory
defects and apoptosis in insulin-secreting cells. Am. J. Physiol.
Endocrinol. Metab. 308, E933–E941
Utsugi,T.,Ohno,T.,Ohyama, Y.,Uchiyama, T., Saito, Y.,Matsumura,
Y.,Aizawa,H., Itoh,H.,Kurabayashi,M.,Kawazu, S.,Tomono, S.,Oka,
Y., Suga, T., Kuro-o, M., Nabeshima, Y., and Nagai, R. (2000)
Decreased insulin production and increased insulin sensitivity in the
Klotho mutant mouse, a novel animal model for human aging.
Metabolism 49, 1118–1123
Forster, I. C., Hernando, N., Biber, J., and Murer, H. (2012)
Phosphate transport kinetics and structure–function relationships
of SLC34 and SLC20 proteins. Curr. Top. Membr. 70, 313–356
Werner, A., Dehmelt, L., and Nalbant, P. (1998) Na+-dependent
phosphate cotransporters: the NaPi protein families. J. Exp. Biol. 201,
–3142
Miyamoto, K., Haito-Sugino, S., Kuwahara, S., Ohi, A., Nomura, K.,
Ito,M.,Kuwahata,M.,Kido,S.,Tatsumi, S.,Kaneko, I., andSegawa,H.
(2011) Sodium-dependent phosphate cotransporters: lessons from
gene knockout and mutation studies. J. Pharm. Sci. 100, 3719–3730
Forster, I. C., Hernando, N., Biber, J., and Murer, H. (2013)
Phosphate transporters of the SLC20 and SLC34 families. Mol.
Aspects Med. 34, 386–395
Li, X., Yang, H. Y., and Giachelli, C. M. (2006) Role of the sodiumdependent
phosphate cotransporter, Pit-1, invascularsmoothmuscle
cell calcification. Circ. Res. 98, 905–912
Massry, S. G. (2001) Insulin secretion in uremia. Am. J. Kidney Dis. 38
(4, Suppl 1)S58–S62
Parnaud, G., Bosco,D., Berney, T., Pattou, F., Kerr-Conte, J., Donath,
M. Y., Bruun, C., Mandrup-Poulsen, T., Billestrup, N., and Halban,
P. A. (2008) Proliferation of sorted human and rat beta cells.
Diabetologia 51, 91–100
Wiederkehr, A., Park, K. S., Dupont, O., Demaurex, N., Pozzan, T.,
Cline,G.W., andWollheim, C. B. (2009)Matrix alkalinization: anovel
mitochondrial signal for sustained pancreatic beta-cell activation.
EMBO J. 28, 417–428
Harootunian, A. T., Kao, J. P., Eckert, B. K., and Tsien, R. Y. (1989)
Fluorescence ratio imaging of cytosolic free Na+ in individual
fibroblasts and lymphocytes. J. Biol. Chem. 264, 19458–19467
Quan, X., Das, R., Xu, S., Cline, G. W., Wiederkehr, A., Wollheim,
C. B., and Park, K. S. (2013) Mitochondrial phosphate transport
during nutrient stimulation of INS-1E insulinoma cells. Mol. Cell.
Endocrinol. 381, 198–209
Quan,X.,Nguyen,T.T.,Choi, S.K.,Xu,S.,Das,R.,Cha, S.K.,Kim,N.,
Han, J., Wiederkehr, A., Wollheim, C. B., and Park, K. S. (2015)
Essential role of mitochondrial Ca2+ uniporter in the generation of
mitochondrial pH gradient and metabolism-secretion coupling in
insulin-releasing cells. J. Biol. Chem. 290, 4086–4096
Petronilli, V.,Miotto,G.,Canton, M.,Brini,M., Colonna, R.,Bernardi,
P., and Di Lisa, F. (1999) Transient and long-lasting openings of the
mitochondrial permeability transitionpore can be monitored directly
in intact cells by changes in mitochondrial calcein fluorescence. Biophys.
J. 76, 725–734
Gautier,C.A.,Giaime, E.,Caballero, E.,N´uñez, L., Song, Z.,Chan, D.,
Villalobos, C., and Shen, J. (2012) Regulation of mitochondrial
permeability transition pore by PINK1. Mol. Neurodegener. 7, 22
Janjic, D., and Wollheim, C. B. (1992) Islet cell metabolism is
reflected by the MTT (tetrazolium) colorimetric assay. Diabetologia
, 482–485
Zorov,D.B., Juhaszova,M., Yaniv, Y.,Nuss,H.B.,Wang, S., and Sollott,
S. J. (2009) Regulation and pharmacology of the mitochondrial
permeability transition pore. Cardiovasc. Res. 83, 213–225
Back, S. H., Kang, S. W., Han, J., and Chung, H. T. (2012)
Endoplasmic reticulum stress in the b-cell pathogenesis of type 2
diabetes. Exp. Diabetes Res. 2012, 618396
Leibrock, C. B., Alesutan, I., Voelkl, J., Pakladok, T., Michael, D.,
Schleicher, E., Kamyabi-Moghaddam, Z., Quintanilla-Martinez, L.,
Kuro-o, M., and Lang, F. (2015) NH4Cl treatment prevents tissue
calcification in Klotho deficiency. J. Am. Soc. Nephrol. 26, 2423–2433
Bose, S., French, S., Evans, F. J., Joubert, F., and Balaban, R. S. (2003)
Metabolic network control of oxidative phosphorylation: multiple
roles of inorganic phosphate. J. Biol. Chem. 278, 39155–39165
Selivanov, V. A., Zeak, J. A., Roca, J., Cascante, M., Trucco, M., and
Votyakova, T. V. (2008) The role of external and matrix pH in
mitochondrial reactive oxygen species generation. J. Biol. Chem. 283,
–29300
Halestrap, A. P., and Richardson, A. P. (2015) The mitochondrial
permeability transition: a current perspective on its identity and role
in ischaemia/reperfusion injury. J. Mol. Cell. Cardiol. 78, 129–141
Alavian, K. N., Beutner, G., Lazrove, E., Sacchetti, S., Park, H. A.,
Licznerski, P., Li,H.,Nabili, P.,Hockensmith,K.,Graham,M., Porter,
G. A., Jr., and Jonas, E. A. (2014) An uncoupling channel within the csubunit
ring of the F1FO ATP synthase is the mitochondrial permeability
transition pore. Proc. Natl. Acad. Sci. USA 111, 10580–10585
Koshkin, V., Bikopoulos, G., Chan, C. B., and Wheeler, M. B. (2004)
The characterization of mitochondrial permeability transition in
clonal pancreatic beta-cells. Multiple modes and regulation. J. Biol.
Chem. 279, 41368–41376
Back, S. H., and Kaufman, R. J. (2012) Endoplasmic reticulum stress
and type 2 diabetes. Annu. Rev. Biochem. 81, 767–793
Scheuner, D., and Kaufman, R. J. (2008) The unfolded protein
response: a pathway that links insulin demand with beta-cell failure
and diabetes. Endocr. Rev. 29, 317–333