Cover Image

Intracellular alkalinization by phosphate uptake via type III sodium–phosphate cotransporter participates in high phosphate-induced mitochondrial oxidative stress and defective insulin secretion

Tuyet Nguyen, Xianglan Quan, Shanhua Xu, Ranjan Das, Seung-Kuy Cha, In Deok Kong, Minho Shong, Claes B Wollheim, Kyu-Sang Park


ABSTRACT: Elevated plasma levels of inorganic phosphate (Pi) are harmful, causing, among other complications, vascular calcificationanddefective insulin secretion.Theunderlying molecularmechanismsof thesecomplications remain poorly understood.Wedemonstrated the role ofPi transport across theplasmalemmaonPi toxicity in INS-1Erat clonalb cells and rat pancreatic islet cells.Type III sodium–phosphate cotransporters (NaPi) are the predominant Pi transporters expressed in insulin-secreting cells. Transcript and protein levels of PiT-1 and -2, isotypes of type III NaPi, were upregulated by high Pi incubation. In patch-clamp experiments, extracellular Pi elicited a Na+-dependent, inwardly rectifying current, which was markedly reduced under acidic extracellular conditions. Cellular uptake of Pi elicited cytosolic alkalinization; intriguingly, this pH change facilitated Pi transport into the mitochondrial matrix. Increased mitochondrial Pi uptake accelerated superoxide generation, mitochondrial permeability transition, and endoplasmic reticulum stress-mediated translational attenuation, leading to reduced insulin content and impaired glucosestimulated insulin secretion. Silencing of PiT-1/-2 prevented Pi-induced superoxide generation andmPT, and restored insulin secretion. We propose that Pi transport across the plasma membrane and consequent cytosolic alkalinization could be a therapeutic target for protection from Pi toxicity in insulin-secreting cells, as well as in other cell types.—Nguyen, T. T., Quan, X., Xu, S.,Das, R., Cha, S.-K., Kong, I. D., Shong, M., Wollheim, C. B., Park,K.-S. Intracellular alkalinization by phosphate uptake via type III sodium–phosphate cotransporter participates in high phosphateinduced mitochondrial oxidative stress and defective insulin secretion. FASEB J. 30, 000–000 (2016).


KEY WORDS: inorganic phosphate • pancreatic b cells • mitochondrial permeability transition • endoplasmic reticulum stress • superoxide

Full Text:



Penido,M. G., and Alon, U. S. (2012) Phosphate homeostasis and its

role in bone health. Pediatr. Nephrol. 27, 2039–2048

Takeda, E., Taketani, Y., Sawada, N., Sato, T., and Yamamoto, H.

(2004)The regulationand functionofphosphate inthehumanbody.

Biofactors 21, 345–355

Hu, M. C., Kuro-o, M., and Moe, O. W. (2013) Renal and extrarenal

actions of Klotho. Semin. Nephrol. 33, 118–129

Kuro-o, M. (2013) A phosphate-centric paradigm for pathophysiology

andtherapyof chronic kidneydisease. Kidney Int Suppl (2011) 3, 420–426

Kuro-o, M. (2013) Klotho, phosphate and FGF-23 in ageing and disturbed

mineral metabolism. Nat. Rev. Nephrol. 9, 650–660

Takeda, E., Yamamoto, H., Nashiki, K., Sato, T., Arai, H., and

Taketani, Y. (2004) Inorganic phosphate homeostasis and the role of

dietary phosphorus. J. Cell. Mol. Med. 8, 191–200

Razzaque, M. S. (2011) Phosphate toxicity: new insights into an old

problem. Clin. Sci. 120, 91–97

Gonzalez-Parra, E., Tunon, J., Egido, J., and Ortiz, A. (2012)

Phosphate: a stealthier killer than previously thought? Cardiovasc.

Pathol. 21, 372–381

Jain,N., andElsayed,E. F. (2013)Dietaryphosphate:what dowe know

about its toxicity? J. Nephrol. 26, 856–864

Di Marco, G. S., K¨onig, M., Stock, C., Wiesinger, A., Hillebrand, U.,

Reiermann, S., Reuter, S., Amler, S., K¨ohler, G., Buck, F., Fobker,M.,

K¨umpers, P., Oberleithner, H., Hausberg, M., Lang, D., Pavenst¨adt,

H., and Brand,M. (2013)High phosphate directly affects endothelial

function by downregulating annexin II. Kidney Int. 83, 213–222

Sekiguchi, S., Suzuki, A., Asano, S., Nishiwaki-Yasuda, K., Shibata,M.,

Nagao, S., Yamamoto, N., Matsuyama,M., Sato, Y., Yan, K., Yaoita, E.,

and Itoh, M. (2011) Phosphate overload induces podocyte injury via

type III Na-dependent phosphate transporter. Am. J. Physiol. Renal

Physiol. 300, F848–F856

Crouthamel, M. H., Lau, W. L., Leaf, E. M., Chavkin, N. W.,

Wallingford, M. C., Peterson,D. F., Li,X., Liu, Y.,Chin,M.T., Levi,M.,

and Giachelli, C. M. (2013) Sodium-dependent phosphate cotransporters

and phosphate-induced calcification of vascular smooth

muscle cells: redundant roles for PiT-1 and PiT-2. Arterioscler. Thromb.

Vasc. Biol. 33, 2625–2632

Fadda,G.Z., Hajjar, S.M., Perna, A. F., Zhou,X. J., Lipson, L. G., and

Massry, S. G. (1991)On themechanismof impaired insulin secretion

in chronic renal failure. J. Clin. Invest. 87, 255–261

Lorenzo, C., Hanley, A. J., Rewers,M. J., and Haffner, S.M. (2014)

Calcium and phosphate concentrations and future development of

type 2 diabetes: the Insulin Resistance Atherosclerosis Study.

Diabetologia 57, 1366–1374

Nguyen, T. T., Quan, X., Hwang, K. H., Xu, S., Das, R., Choi, S. K.,

Wiederkehr, A., Wollheim, C. B., Cha, S. K., and Park, K. S. (2015)

Mitochondrial oxidative stress mediates high-phosphate-induced secretory

defects and apoptosis in insulin-secreting cells. Am. J. Physiol.

Endocrinol. Metab. 308, E933–E941

Utsugi,T.,Ohno,T.,Ohyama, Y.,Uchiyama, T., Saito, Y.,Matsumura,

Y.,Aizawa,H., Itoh,H.,Kurabayashi,M.,Kawazu, S.,Tomono, S.,Oka,

Y., Suga, T., Kuro-o, M., Nabeshima, Y., and Nagai, R. (2000)

Decreased insulin production and increased insulin sensitivity in the

Klotho mutant mouse, a novel animal model for human aging.

Metabolism 49, 1118–1123

Forster, I. C., Hernando, N., Biber, J., and Murer, H. (2012)

Phosphate transport kinetics and structure–function relationships

of SLC34 and SLC20 proteins. Curr. Top. Membr. 70, 313–356

Werner, A., Dehmelt, L., and Nalbant, P. (1998) Na+-dependent

phosphate cotransporters: the NaPi protein families. J. Exp. Biol. 201,


Miyamoto, K., Haito-Sugino, S., Kuwahara, S., Ohi, A., Nomura, K.,

Ito,M.,Kuwahata,M.,Kido,S.,Tatsumi, S.,Kaneko, I., andSegawa,H.

(2011) Sodium-dependent phosphate cotransporters: lessons from

gene knockout and mutation studies. J. Pharm. Sci. 100, 3719–3730

Forster, I. C., Hernando, N., Biber, J., and Murer, H. (2013)

Phosphate transporters of the SLC20 and SLC34 families. Mol.

Aspects Med. 34, 386–395

Li, X., Yang, H. Y., and Giachelli, C. M. (2006) Role of the sodiumdependent

phosphate cotransporter, Pit-1, invascularsmoothmuscle

cell calcification. Circ. Res. 98, 905–912

Massry, S. G. (2001) Insulin secretion in uremia. Am. J. Kidney Dis. 38

(4, Suppl 1)S58–S62

Parnaud, G., Bosco,D., Berney, T., Pattou, F., Kerr-Conte, J., Donath,

M. Y., Bruun, C., Mandrup-Poulsen, T., Billestrup, N., and Halban,

P. A. (2008) Proliferation of sorted human and rat beta cells.

Diabetologia 51, 91–100

Wiederkehr, A., Park, K. S., Dupont, O., Demaurex, N., Pozzan, T.,

Cline,G.W., andWollheim, C. B. (2009)Matrix alkalinization: anovel

mitochondrial signal for sustained pancreatic beta-cell activation.

EMBO J. 28, 417–428

Harootunian, A. T., Kao, J. P., Eckert, B. K., and Tsien, R. Y. (1989)

Fluorescence ratio imaging of cytosolic free Na+ in individual

fibroblasts and lymphocytes. J. Biol. Chem. 264, 19458–19467

Quan, X., Das, R., Xu, S., Cline, G. W., Wiederkehr, A., Wollheim,

C. B., and Park, K. S. (2013) Mitochondrial phosphate transport

during nutrient stimulation of INS-1E insulinoma cells. Mol. Cell.

Endocrinol. 381, 198–209

Quan,X.,Nguyen,T.T.,Choi, S.K.,Xu,S.,Das,R.,Cha, S.K.,Kim,N.,

Han, J., Wiederkehr, A., Wollheim, C. B., and Park, K. S. (2015)

Essential role of mitochondrial Ca2+ uniporter in the generation of

mitochondrial pH gradient and metabolism-secretion coupling in

insulin-releasing cells. J. Biol. Chem. 290, 4086–4096

Petronilli, V.,Miotto,G.,Canton, M.,Brini,M., Colonna, R.,Bernardi,

P., and Di Lisa, F. (1999) Transient and long-lasting openings of the

mitochondrial permeability transitionpore can be monitored directly

in intact cells by changes in mitochondrial calcein fluorescence. Biophys.

J. 76, 725–734

Gautier,C.A.,Giaime, E.,Caballero, E.,N´uñez, L., Song, Z.,Chan, D.,

Villalobos, C., and Shen, J. (2012) Regulation of mitochondrial

permeability transition pore by PINK1. Mol. Neurodegener. 7, 22

Janjic, D., and Wollheim, C. B. (1992) Islet cell metabolism is

reflected by the MTT (tetrazolium) colorimetric assay. Diabetologia

, 482–485

Zorov,D.B., Juhaszova,M., Yaniv, Y.,Nuss,H.B.,Wang, S., and Sollott,

S. J. (2009) Regulation and pharmacology of the mitochondrial

permeability transition pore. Cardiovasc. Res. 83, 213–225

Back, S. H., Kang, S. W., Han, J., and Chung, H. T. (2012)

Endoplasmic reticulum stress in the b-cell pathogenesis of type 2

diabetes. Exp. Diabetes Res. 2012, 618396

Leibrock, C. B., Alesutan, I., Voelkl, J., Pakladok, T., Michael, D.,

Schleicher, E., Kamyabi-Moghaddam, Z., Quintanilla-Martinez, L.,

Kuro-o, M., and Lang, F. (2015) NH4Cl treatment prevents tissue

calcification in Klotho deficiency. J. Am. Soc. Nephrol. 26, 2423–2433

Bose, S., French, S., Evans, F. J., Joubert, F., and Balaban, R. S. (2003)

Metabolic network control of oxidative phosphorylation: multiple

roles of inorganic phosphate. J. Biol. Chem. 278, 39155–39165

Selivanov, V. A., Zeak, J. A., Roca, J., Cascante, M., Trucco, M., and

Votyakova, T. V. (2008) The role of external and matrix pH in

mitochondrial reactive oxygen species generation. J. Biol. Chem. 283,


Halestrap, A. P., and Richardson, A. P. (2015) The mitochondrial

permeability transition: a current perspective on its identity and role

in ischaemia/reperfusion injury. J. Mol. Cell. Cardiol. 78, 129–141

Alavian, K. N., Beutner, G., Lazrove, E., Sacchetti, S., Park, H. A.,

Licznerski, P., Li,H.,Nabili, P.,Hockensmith,K.,Graham,M., Porter,

G. A., Jr., and Jonas, E. A. (2014) An uncoupling channel within the csubunit

ring of the F1FO ATP synthase is the mitochondrial permeability

transition pore. Proc. Natl. Acad. Sci. USA 111, 10580–10585

Koshkin, V., Bikopoulos, G., Chan, C. B., and Wheeler, M. B. (2004)

The characterization of mitochondrial permeability transition in

clonal pancreatic beta-cells. Multiple modes and regulation. J. Biol.

Chem. 279, 41368–41376

Back, S. H., and Kaufman, R. J. (2012) Endoplasmic reticulum stress

and type 2 diabetes. Annu. Rev. Biochem. 81, 767–793

Scheuner, D., and Kaufman, R. J. (2008) The unfolded protein

response: a pathway that links insulin demand with beta-cell failure

and diabetes. Endocr. Rev. 29, 317–333


  • There are currently no refbacks.